Medical Genomics of the Human Immune System For PMK Medical Student Y3

Col. Kitti Buranawuti, MD, FACMG Medical Genomics Division Phramongkutklao Hospital College of Medicine

B1.4.7 Immunogenetics: MHC structure and function,

erythrocyte antigens

B1.5.5 Diseases of the immune system

I. Molecular Immunogenetics

II. Clinical Immunogenetics

I. Molecular Immunogenetics

Innate Immunity

Non-specific responses such as phagocytosis

Adaptive Immunity Specifically acquired T and B lymphocytic responses to particular antigens

Genes of Key Components of the Adaptive Immune Response

Major Histocompatibility Complex (MHC)

Immunoglobulin (Ig)

T-Cell Antigen Receptor (TCR)

" Immunoglobulin gene superfamily

MHC Class I Mediated Antigen Presentation

7/24/2019

MHC Class II Mediated Antigen Presentation

7/24/2019

Col Kitti Buranawuti, MD, FACMG

7

Gene Structure of the Human MHC

Major Histocompatibility Complex

MHC region:

- The MHC genomic region, located on the short arm of chromosome 6 (6p21.3)
- Contains the HLA (Human Leukocyte Antigen) genes
- At least 200 other genes (≈40% involved in some aspect of the immune response)
- Spanning \approx 3.6 Mb (Shiina et al, 2009)
- It is the most gene-dense region of the genome (≈ 1 gene/16 kb)
- High levels of polymorphism
- Referred to as the HLA region (in humans)

Major Histocompatibility Complex

Extended MHC region:

- ~ 8 Mb of chromosome 6, containing over 250
 protein-coding genes
- This region expands the MHC borders to segments with high linkage disequilibrium with the MHC
- Contains additional genes involved in the immune
 response (Horton et al, 2004; Shiina et al, 2009)

MHC / HLA Class

Class or loci of HLA genes:

 Classical HLA genes are the highly polymorphic loci that code for the proteins that present peptides to the T-cell receptors (*HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRA1*) → Class I, II

 Non-Classical genes which have reduced polymorphism and do not have a role in peptide presentation. → Class III

HLA allele

- A specific DNA sequence at an HLA gene
 Can be thought of as a haplotype of SNP variants
- There are extraordinarily large numbers of HLA alleles, with > 12,000 for class I alleles and > 4,000 for class II.

HLA Haplotype

The combination of alleles at several HLA genes

on a single chromosome of a given individual.

7/24/2019

Protein & DNA Variation at HLA Loci

HLA Locus	Antigenic Variants	DNA Variants
HLA-A	25	83
HLA-B	53	186
HLA-C	11	42
HLA-DR	20	221
HLA-DQ	9	49
HLA-DP	6	88

HLA Function

• HLA class I molecules

- Expressed in most cells, bind peptides of intracellular origin and present them on the cell surface to the TCRs of CD8+ T-cells
- Initiating a cytotoxic response if they are recognized as foreign.

HLA class II molecules

- Expressed in antigen presenting cells, typically bind peptides of extracellular origin and present them to the TCRs of CD4+ T-cells
- Triggering a signaling process that leads to the multiplication of T-helper cells
- Leading to the stimulation of B-cells, which produce antibodies to the antigen that triggered the response.

Inheritance of HLA Haplotypes

HLA Allele & Diseases Associations

Ankylosing spondylitis Reiter syndrome Acute anterior uveitis Nacrolepsy Celiac disease Hemochromatosis **Congenital adrenal hyperplasia**

B27 B27 B27 DQ6 DQ2**A**3 **Bw47**

Nomenclature of HLA Allele

Immunoglobulin (lg)

Immunoglobulin Structure

Ig H Chain Gene Rearrangements

Ig L Chain Gene Rearrangements

Genes Controlling Isotype Switching of Antibodies

Constant Region of the H Chain Controls Antibody Function

lg Isotype	Representative Immunological Functions
М	Complement activation
D	Unknown
G	Complement activation, placental transfer, binding to macrophage Fc receptors
E	High affinity binding to mast cells and basophils to elicit histamine/serotonin release
Α	Mucosal membrane immunity

Additional factors contributing to antibody diversity

Junctional diversity

Results from the insertion of additional untemplated nucleotides to double stranded V, D, J sequences undergoing recombination

Imprecise joining

Results from variability in original points of DNA fragmentation in V, D, J sequences undergoing recombination

Combinatorial diversity

Results from the pairing of H and L chains produced by independent gene rearrangement events

Restricted Expression

Isotypic exclusion

Ig produced by single B cell contains only a single H isotype and a single L isotype

Allelic exclusion

Either the paternal or maternal allele for each H and L chain is expressed within single cell

Generation of Antibody Diversity

Germline Genes	н	K	λ
V	200	100	100
D	20	-	-
J	6	5	6
VxDxJ	2.4x10 ⁴	500	600
Нхк	1.2x10 ⁷		
$H \times \lambda$	1.4x10 ⁷		
Total potential	~10 ¹¹		
7/24/2019	Col Kitti Buranawuti	, MD, FACMG	

Immunoglobulin Diversity

- Unique somatic rearrangement of DNA sequence in lymphocyte precursor cells
- Can generate ~ 10¹¹ different antibodies
- Protect against the large array of infectious organisms, toxins, cancer cells

TH1 Cytokine Mediated Cooperation Between CD4 and CD8 T Cells

T Cell Receptor (TCR)

T Cell Receptor Genes

7/24/2019

T Cell Receptor Gene Rearrangement Patterns

ABO Red Cell Antigen

7/24/2019

ABO gene

- Chromosome: 9q34.2
- ABO gene is organized in 7 exons
- Spans over 19 kb

- Base pairs: 1,147
- Amino acids: 373

ABO Alleles

 O blood: deletion of guanine 258 near the N-terminus of the protein which results in a frameshift and translation of an almost entirely different protein

Structure	Minimal determinant structure
	Fuc–α1→2–Gal–β1–R
α1.2 α1.2 β1.34 β1.3 β1.34 β1.34 (*)	Gal-α1→3 Sal-β1-R Fuc-α1→2
	GalNAc-α1→3 Gal-β1-R Fuc-α1→2
	Structure $ \begin{array}{c} & \beta 1.3^{4} \\ & \beta 1.3 \\ & \alpha 1.2 \\ & \alpha 1.2 \\ & \alpha 1.3 \\ & \alpha 1.2 \\ & \alpha 1.3 \\$

A, B blood:

- The first of the seven nucleotide substitutions which distinguish the A and B transferases, resides in coding exon 6; exon 7 contains the other 6 nucleotide substitutions which result in four amino acid substitutions that differentiate the A and B transferases.
- Among those, substitutions
 responsible for alterations at two sites
 (L266M and G268A) determine the A
 or B specificity of the enzyme
 (Yamamoto and Hakamori).

II. Clinical Immunogenetics

When To Suspect a Host Defense Defect?

- Frequent infections
 - Recurrent
 - Persistent, despite therapy
 - Severe
 - Caused by opportunistic pathogens
- Failure to thrive

Family history

7/24/2019

Immune Defects and Infections

Adaptive Immune System

- T cell or combined defect--viruses, fungi and bacteria; opportunistic pathogens
- B cell defect--bacterial; respiratory tract

Innate Immune System

- NK cell defect--virus-infected cells (cancer cells)
- Granulocyte defect--staphylococci, other bacteria
- Macrophage activation defect-mycobacterial disease
- Complement defect (C5-9)--neisserial infections

Examples of Some Genetically Caused Immunodeficiency Syndromes

Immunodeficiency syndrome	Causative defect	Characteristic immune defect
Severe combined immunodeficiency (<i>scid</i>)	Several including a defect in the <i>Prkdc</i> DNA repair gene, as well as ADA or PNP deficiencies	No T or B lymphocytes
MHC class I deficiency	Tap gene mutations	No CD8 T cells
MHC class II deficiency	At least five, including a defect in the class II transactivator (<i>CIITA</i>) gene	No CD4 T cells
X-linked agamma- globulinemia	<i>Btk</i> tyrosine kinase gene	No B lymphocytes
X-linked hyper-lgM syndrome	Defective CD40 ligand (<i>Cd40l</i>) gene	No isotype switching from IgM
Phagocyte deficiencies	Multiple gene defects	Loss of phagocytic activity
Complement deficiencies	Multiple gene defects	Loss of complement activity
7/24/2019	Col Kitti Buranawuti, MD, FACMG	40

Nine X-Linked Primary Immune Diseases

7/24/2019

Severe Combined Immunodeficiency (SCID)

Infections in first year

severe, persistent despite routine treatment opportunistic pathogens

- Failure to thrive
- Few or absent T cells poor proliferation to mitogens
- Non-functional or absent B cells low lg's; no specific antibody responses
- Fatal without immune reconstitution

SCID Genetic Analysis pre-1993

Unknown

Adenosine deaminase defective in a minority of cases

ADA

SCID Genetic Analysis Today

- X-linked SCID most common
- >10 genotypes known
- Specific gene defect can be found in 80%
- Clinical applications: Carrier, prenatal dx Gene therapy Predict response to bone marrow transplant

SCID Genes

				т	B	NK
•	IL2RG	XL	50%	-	+	-
•	ADA	AR	14%	-	-	-
•	JAK3	AR	7%	-	+	-
•	IL7RA	AR	7%	-	+	+
•	RAG	AR	<7%	-	-	+
•	ARTEMIS	AR	<5%	-	-	+
•	CD45	AR	rare	-	+	+
•	TCRD (CD3δ)	AR	rare	-	+	+
•	FOXN1	AR	rare	-	+	+

X-Linked Inheritance of SCID

7/24/2019

XSCID IL2RG Protein: Common Gamma Chain (gc) of Cytokine Receptors

IL2RG Mutations in XSCID

IL2 RG Domains

- signal sequence
- C conserved cysteine
- WSXWS box
 - transmembrane
 - box1-box2 domain
 - 3' untranslated

X-linked yc-SCID Mutations

- nonsense
- insertion, frame shift A
- insertion, in frame
- * RNA processing
- translation mutations

- o missense
 - deletion, frame shift
- deletion, in frame
- large deletion

IL2RGbase, Puck et al.

7/24/2019

ТΜ

В

 \times

Col Kitti Buranawuti, MD, FACMG

49

Limitations of Bone Marrow Transplant (BMT) Treatment for XSCID

- Most patients lack HLA-matched sibling
- Graft vs. host disease
- Persistent immune defects
 T cell loss

Non-functional host B cells

Integrating Retrovirus Vectors:

Backbone

Maloney murine leukemia virus Lentivirus

<u>Envelope</u>	Receptor	Host range
Amphotropic	PiT-2	mouse, dog, primate, human
Gibbon Ape Leukemia Virus	PiT-1	human, primate, dog
Feline Leukemia Virus	Neutral aa	human, primate, dog
		8

XSCID: A Good Pilot Disease for Gene Therapy

- BMT does not cure all patients
- Hematopoietic stem cells, HSC, can be removed, transduced and re-infused
- γc expressed in all blood lineages, not tightly regulated
- No immune elimination of corrected cells
- In vivo selective advantage for lymphocytes expressing normal γc protein
- Success in mouse model

7/24/2019

Gene Therapy for the Treatment of Primary Immune Deficiencies. Kuo CY, Kohn DB Curr Allergy Asthma Rep. 2016 May;16(5):39. Gene Therapy of Human Severe Combined Immunodeficiency (SCID)-X1 Disease Cavazzana-Calvo M, Hacein-Bey S, deSaint Basile G, et al.Science 288 (Apr):669-672, 2000. Gene Therapy for X-Linked Severe Combined Immunodeficiency: Where Do We Stand? Cavazzana M, Six E, Lagresle-Peyrou C, André-Schmutz I

Hum Gene Ther. 2016 Feb;27(2):108-16. Sustained Correction of X-Linked Severe Combined Immunodeficiency by ex Vivo Gene Therapy Hacein-Bey-Abina S, Le Deist F, Carlier F, et al.New Engl J Med (Apr 18):1185-1192, 2002.

7/24/2019

Adverse Events in French XSCID Gene Therapy Trial

Of 10 infants treated, 9 had excellent immune restoration. Two developed leukemia 27-30 mo. after treatment. <u>Pt #4 (age 1 mo)</u>: expansion of T cell clone

- Gene therapy vector in reverse orientation intron 1 of
- LMO2, a T-ALL associated transcription factor.
- Other factors: family history of childhood cancer,
- chickenpox, ch 6:13 translocation.

Chemotherapy

7/24/2019

- Chemotherapy, then allogeneic BMT.
- <u>Pt #5 (age 3 mo)</u>: expansion of at \geq 2 separate T cell clones
 - Vector 5' to LMO2 in forward orientation
 - Col Kitti Buranawuti, MD, FACMG

Agammaglobulinemia

- Recurrent infections starting in infancy Otitis, pneumonia Pyogenic bacteria
- Few or absent B cells; bone marrow contains pre-B cells
- No circulating antibodies

Agammaglobulinemia Genotypes

 X-Linked (XLA) >80% of cases Males Defect in BTK, B cell tyrosine kinase Autosomal Recessive Males and females μ heavy chain immunoglobulin gene $\lambda 5$ surrogate light chain gene Ig α component of B cell antigen receptor BLNK scaffold adaptor protein for B cell signaling

•

X-Linked Hyper IgM Syndrome, CD40 Ligand Deficiency

Failure of isotype switching; very low IgG, IgA, IgE

- CD40L expressed on activated T cells is essential for B cell activation; T cell defects and neutropenia are also found
- Recurrent bacterial respiratory infections, also PCP pneumonia and hepatobiliary disease
- Autosomal recessive forms of failure to isotype switch have been defined

•Treatment:

Early, aggressive management of infections Prophylactic antibiotics Bone marrow transplantation if HLA identical sibling exists

Thank You & Good Luck !

