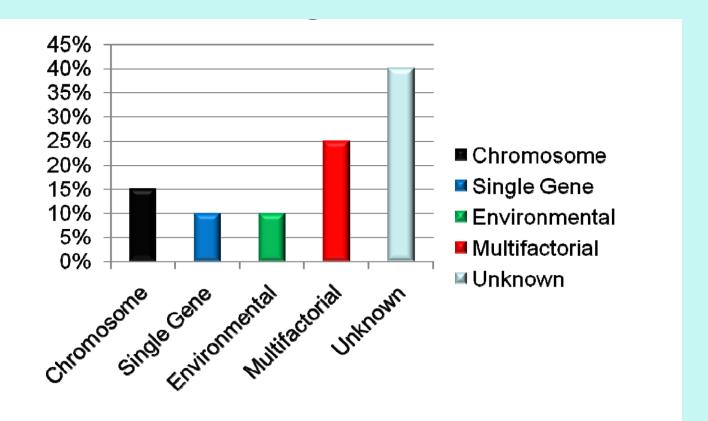


Col. Kitti Buranawuti, MD, FACMG

Medical Genomics Division

Department of Medicine

Phramongkutklao Hospital College of Medicine

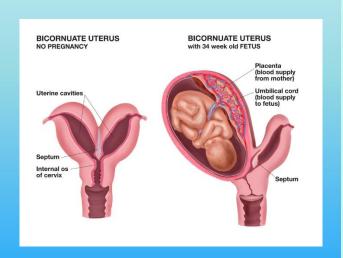


Congenital Anomalies

- 1-3% of all newborns
- Leading cause of neonatal morbidity and mortality
 - 20% of infant deaths
 - 10% NICU admissions, 25-35% of deaths
- Pediatric admissions
 - 25% to 30% have major birth defect

Causes of Congenital Anomalies

Congenital Anomalies


 Isolated Anomaly 	Incidence per livebirths
Undescended testes	1:30
Heart defect	1:150
Club foot	1:300
Neural tube defects	1:500
Cleft lip + cleft palate	1:1000
Hypospadias	1:1000
Polydactyly	1:1500
Cleft palate	1:2000
Craniosynostosis	1:2000
Syndactyly	1:2000

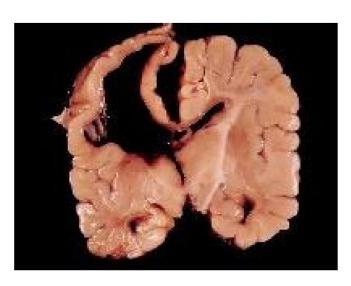

Deformation

- Developmental Process is <u>normal</u>
- Mechanical force alters structure
- Examples:
 - Oligohydramnios
 - Breech presentation
 - Bicornuate uterus

DEFORMATION

Clubbed feet • spina bifida

Moore. The Developing Human. Saunders, 1994


Disruption

Developmental process is <u>normal</u>, but interrupted

- Examples:
 - Amniotic band sequence
 - Fetal Cocaine exposure

Disruption

Porencephaly

http://www.neuropat.dote.hu/develop.htm#Porencephaly

Amniotic Band

Wiedemann and Kunze. Clinical Syndromes. Mosby-Wolfe, 1997

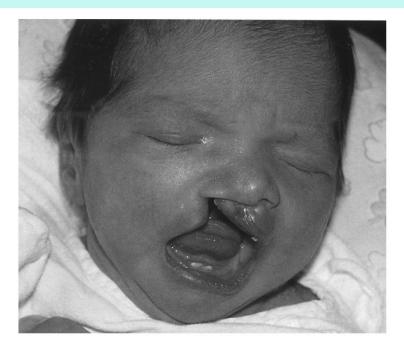
Dysplasia

Abnormal tissue organization, microscopic structure

- Examples:
 - Skeletal or connective tissue dysplasias
 - Ectodermal dysplasias

Dysplasia

Ectodermal Dysplasia


Buyse. Birth Defects Encyclopedia. Blackwell Science, 1990; Baraitser and Winter. Color Atlas of Congenital Malformation Syndromes, Mosby-Wolfe, 1996; Bergsma. Birth Defects Compendium, Alan R. Liss, 1979.

Malformation

- Morphological defect from an intrinsically abnormal developmental process
- Examples: holoprosencephaly, congenital heart disease, neural tube defect

Malformation

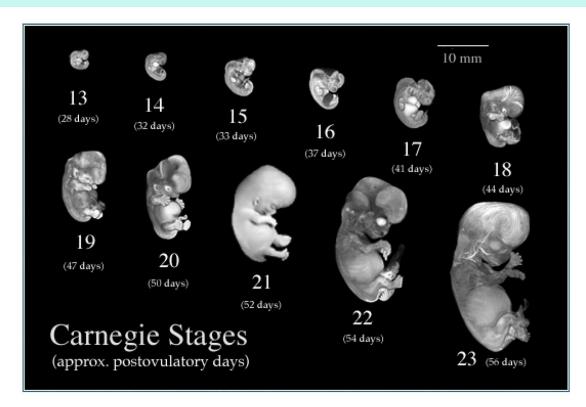
Unilateral Cleft Lip and Palate

Moore, Persaud, and Shiota. Color Atlas of Clinical Embryology. Saunders, 1994

Syndrome

- A recognizable pattern of anomalies presumed to be causally related
 - Genetic: chromosomal, single gene
 - Environmental: alcohol, retinoic acid
 - Complex: more than one genetic and/or environmental factor

Syndrome



- Fetal Alcohol
 - Growth retardation
 - Microcephaly
 - Mental retardation
 - Short palpebral fissures
 - Short nose
 - Smooth philtrum
 - Thin upper lip
 - Small distal palanges
 - Hypoplastic finger nails
 - Cardiac defects

Clarren and Smith. NEJM 298:1063, 1978

Normal Development

Developmental Pathways and Mechanisms

Cellular Processes During Development
Germ Cells and Stem Cells
Fate, Specification and Determination
Axis Specification and Pattern Formation
Positional Information: HOX Clusters
Cellular and Molecular Mechanisms of Development

Developmental Pathways

Evolutionary Conservation of Mechanisms and Pathways

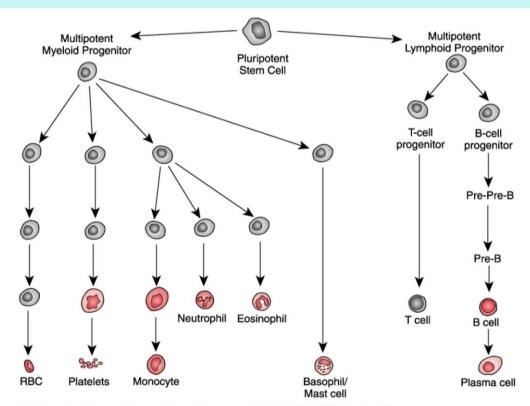
Cellular Processes During Development

Fundamental Problem

Turn a single cell (fertilized egg) into a fully and normally developed organism

Four Basic Cellular Processes During Development

Proliferation (increase cell numbers by division)


Differentiation (acquire novel functions or structures)

Migration (move within the embryo)

Programmed Cell Death (controlled elimination of cells)

Germ Cells and Stem Cells

Fate, Specification, and Determination

Fate: process by which an undifferentiated cell moves through a series of discrete steps in to manifest distinct functions or attributes to become a further differentiated cell (an erythrocyte, a keratinocyte, or a cardiac myocyte).

Specification: when a cell acquires specific characteristics but can still be influenced by environmental cues (signaling molecules, positional information) to change its ultimate fate.

Determination: the state of commitment when a cell either irreversibly acquires attributes or has irreversibly been committed to acquire those attributes.

With the exception of the germ cell and stem cell compartments, all cells undergo specification and determination to their ultimate developmental fate.

Differentiation

CS 7, day 15-17

- Gastrulation occurs as cells migrate from the epiblast, to form mesoderm.
- Mesoderm lies between the ectoderm and endoderm as a continuous layer
- From the primitive node a tube extends under the ectoderm to form the notochord

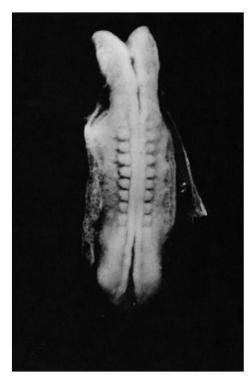
Primitive node Primitive streak

Epiblast

Amnioblasts

Invaginating mesoderm cells

Hypoblast


http://www.med.unc.edu/embryo_images/unit-bdyfm/bdyfm_htms/bdyfm003.htm

Pattern Formation

CS 10, week 4

- Ectoderm: Neural folds fuse
- Mesoderm: continued segmentation of paraxial mesoderm (4 - 12 somite pairs)

Organogenesis

CS 16, week 6
Nasal pits moved ventrally, auricular hillocks, foot plate

CS 18, week 7
Finger rays,
Ossification commences

http://embryology.med.unsw.edu.au/wwwhuman/Stages/Stages.htm

Growth

CS 20, week 8 Upper limbs longer and bent at elbow

CS 23, week 9 Rounded head, body and limb

http://embryology.med.unsw.edu.au/wwwhuman/Stages/Stages.htm

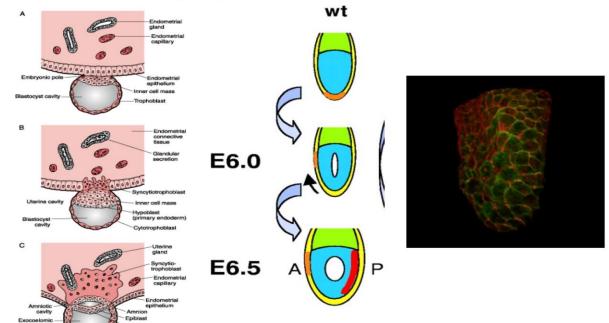
Axis Specification

A-P: anterior-posterior (cranial-caudal)

[Proximal-distal for limbs]

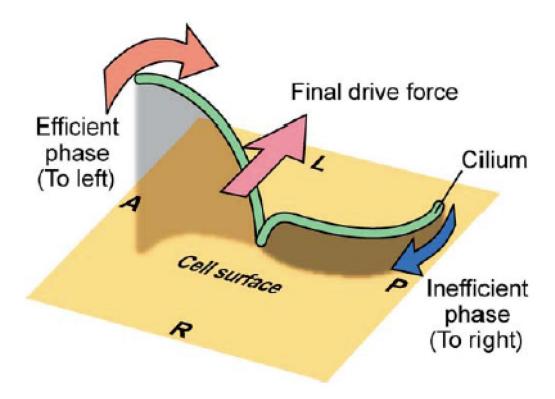
D-V: dorsal-ventral (back-front)

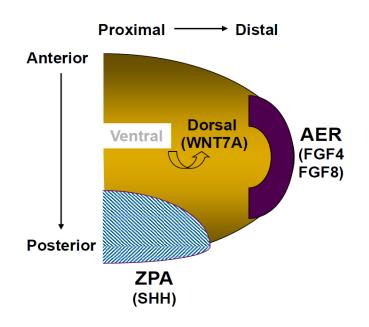
L-R: left-right axes


Patterning program of the embryo is overlaid onto these axes

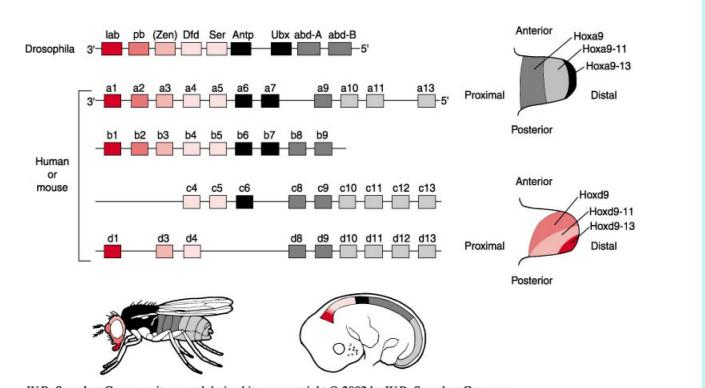
Axis Specification

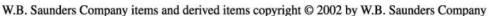
W.B. Saunders Company items and derived items copyright © 2002 by W.B. Saunders Company


Rotation of the Proximo-Distal (P-D) to Anterior-Posterior (A-P) axis and Mesoderm Induction



Nodal cilia rotate in a clockwise fashion to drive leftward fluid flow





Positional Information: HOX Clusters

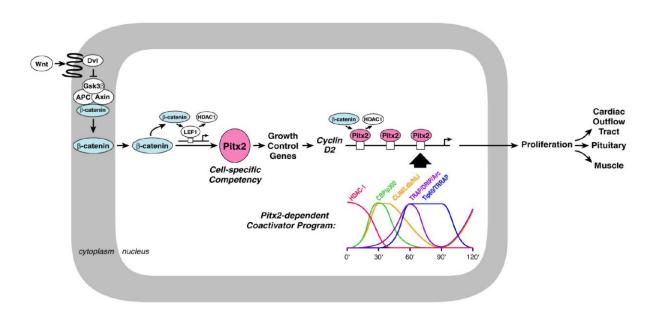
HOX Gene Mutation: Syndromes

- Anterior Head
 - HOXA1
 - Athabaskan Brainstem Dysgenesis
 - Bosley-Salih-Alorainy Syndrome (Duane Syndrome, Deafness, Delayed Motor Milestones, Autism)
- Posterior Tail
 - HOXA11
 - Radioulnar Synostosis with Amegakaryocytic Thombocytopenia
 - HOXA13
 - Hand-Foot-Uterus Syndrome
 - Preaxial Deficiency, Postaxial Polydactyly and Hypospadius

HOX Gene Mutation: Syndromes

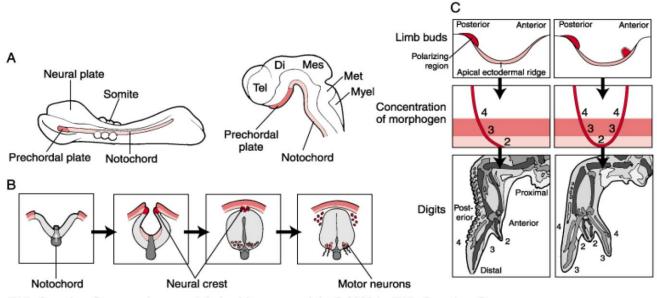
- Posterior Tail
 - ■HOXD10
 - Vertical Talus, Congenital (Rocker-Bottom Foot)
 - ■HOXD13
 - Synpolydactyly 1 (Syndactyly, Type II)
 - Brachydactyly, Types D and E

Cellular and Molecular Mechanisms of Development

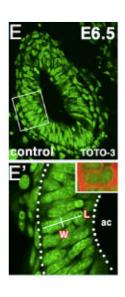

Gene Regulation by Transcription Factors Morphogens and Cell-Cell Signaling Cell Shape and Organization **Cell Migration Programmed Cell Death**

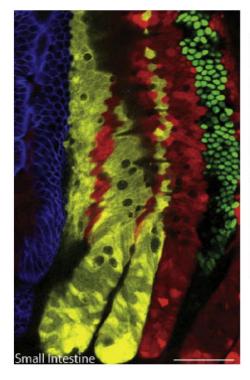
Gene Regulation by Transcription Factors

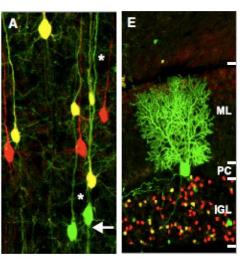
Model for *Wnt* Pathway and *Pitx2* during Development



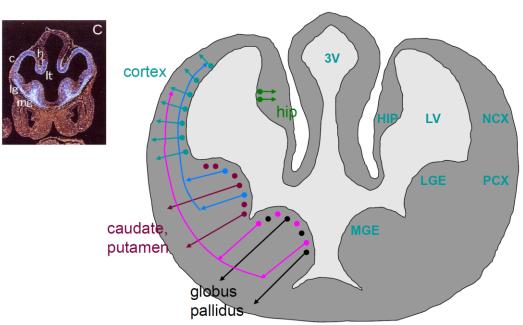
Kioussi et al. Cell (2002)


Morphogens and Cell-Cell Signaling

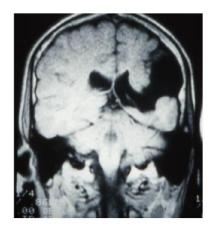

Morphogens: Sonic Hedgehog (SHH) in Neural Tube and Limb



Cell Shape and Organization

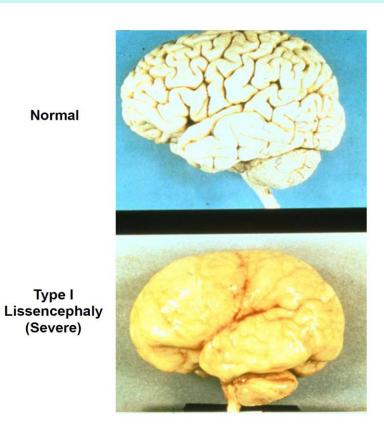


Cell Migration


The cortex forms by radial and nonradial migration

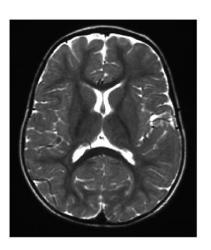
Neuronal Proliferation & Migration Syndromes

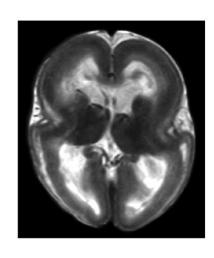
- Proliferation
 - Microcephaly
 - ◆ AR multiple loci
- Migration
 - Lissencephaly
 - ◆ Miller-Dieker LIS1
 - ◆ X-linked: DCX (doublecortin)
 - X-linked with abnormal genitalia (ARX)
 - Cobblestone dysplasia (Fukuyama MD, Walker-Warburg, muscle-eyebrain)
 - Heterotopia
 - ◆ Periventricular nodular (FLN1)
- Cortical Organization
 - Pachygyria/polymicrogyria
 - Schizencephaly
 - **◆** *EMX*2



schizencephaly

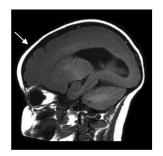
11/13/2019

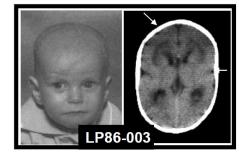

Lissencephaly - Brain

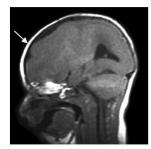

Lissencephaly - Brain MRI

Normal

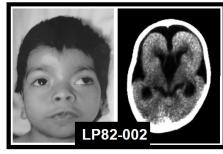
Lissencephaly Severe MR Seizures

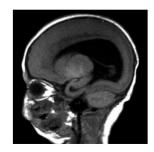

Early Death


Incidence: 1/50,000-1/100,000

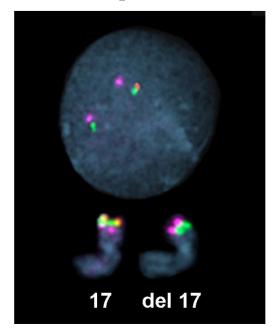

Isolated
Lissencephaly
Sequence

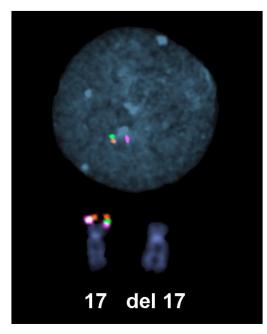
LP87-001




Isolated
Lissencephaly
Sequence

Miller-Dieker Syndrome





11/13/2019

Heterozygous Deletions of 17p13.3 in ILS and MDS

11/13/2019

Programmed Cell Death During Development

Brain Immune System Limb

Developmental Pathways and Mechanisms

Cellular Processes During Development
Germ Cells and Stem Cells
Fate, Specification and Determination
Axis Specification and Pattern Formation
Positional Information: HOX Clusters
Cellular and Molecular Mechanisms of Development

Developmental Pathways

Evolutionary Conservation of Mechanisms and Pathways

Core Pathways

EGF/TGFalpha/EGFR Pathway (via RAS)

Ephrin/Eph Signaling

FGF Signaling

Sonic Hedgehog Signaling

HGF/Met Signaling

NGF Pathway

Notch Signaling

RAS Pathway

TGF-Beta/BMP/Activin Pathway

TNF Signaling

Wnt Signaling

Cell Cycle, Proliferation, Apoptosis

Activation of cAMP-Dependent Kinase
Akt Signaling

ATM/BRCA DNA Damage Response/Checkpoint

Apoptosis: Caspase and FAS pathways

Cyclins and Cell Cycle Regulation

EGF/TGFalpha/EGFR Pathway

ERK/MAPK Signaling

Integrin Signaling Pathways

FGF Signaling

Glucocorticoid/Estrogen/Androgen Nuclear Hormone Receptor

GPCR Signaling

Growth Hormone Signaling

Insulin Receptor Signaling

PI3 Kinase/IP3/PTEN Pathway

JAK/STAT Pathway

JNK Pathway

mTOR Pathway

Mismatch Repair

NF-KappaB Pathway

Processes

CELL ADHESION

Ephrin/Eph Signaling

Integrin Signaling Pathways

MISCELLANEOUS

HIF1alpha Pathway

Planar Cell Polarity Pathway

Apical Junctional Complex/Polarity Proteins

VEGF Pathway

NGF Pathway

Rho/RhoA GTPase

GDNF Pathway

Endothelin Pathway

Microtubule Motors, Cilia, and Cytoskeleton Vesicle-Mediated Trafficking and Endocytosis Extracellular Matrix Guidance Molecules Junctions, Transporters and Channels

General

Chromatin Remodeling

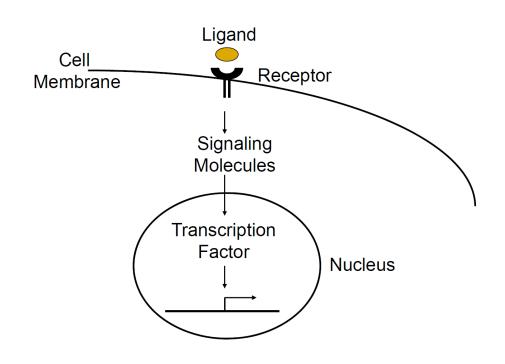
DNA Methylation and Transcriptional Repression

Glucocorticoid/Estrogen/Androgen Nuclear Hormone Receptor Superfamily

Transcription Factor Families (Homeobox, Paired-box, Forkhead, T-box, SOX)

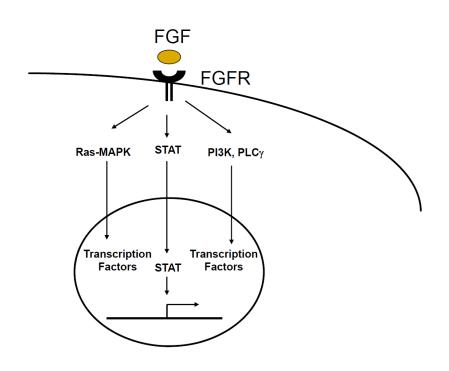
Other Transcription Factors

Translational Regulation

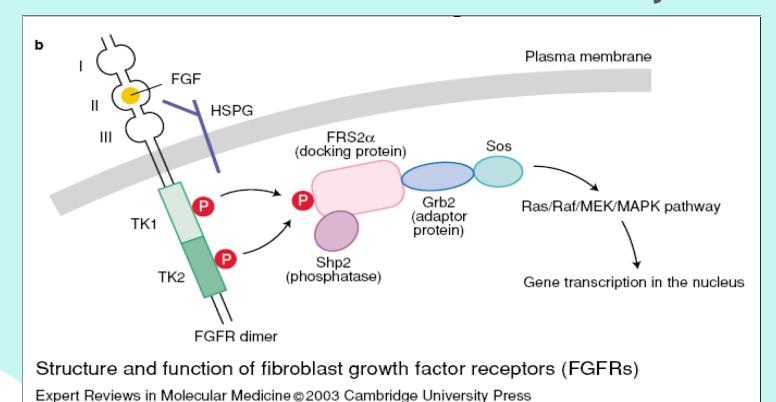

Regulation of SUMOylation

Regulation of Ubiquitination

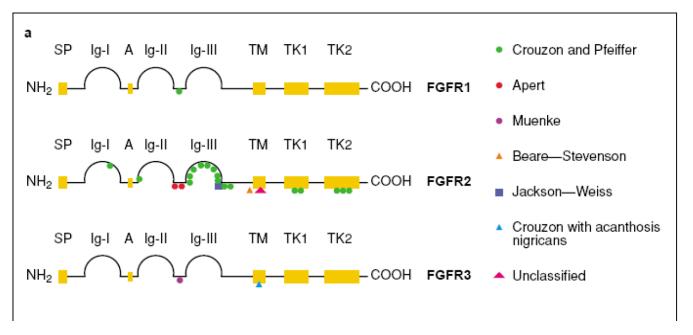
RNAi Processing Pathway



Signal Transduction Pathway



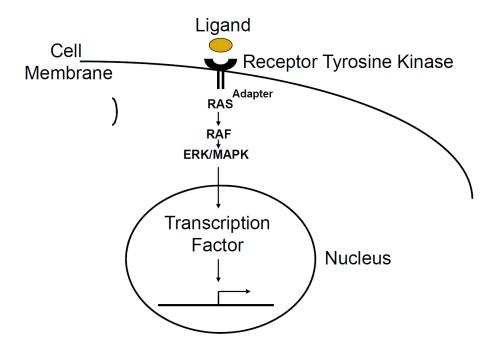
Fibroblast Growth Factor Signaling


Fibroblast Growth Factor Pathway

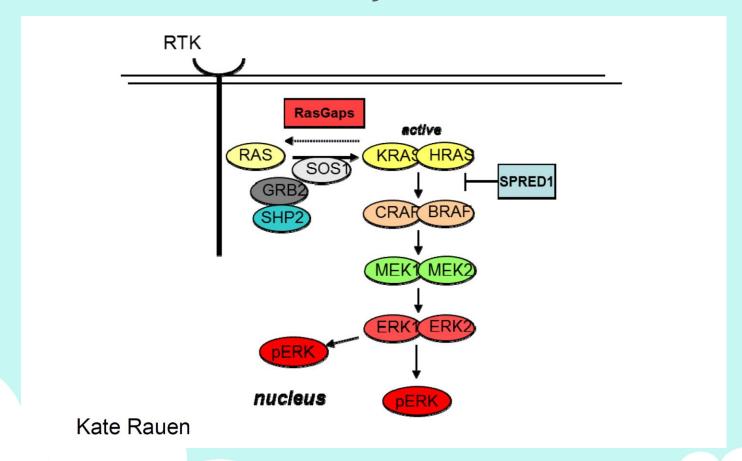
Fibroblast Growth Factor Receptors

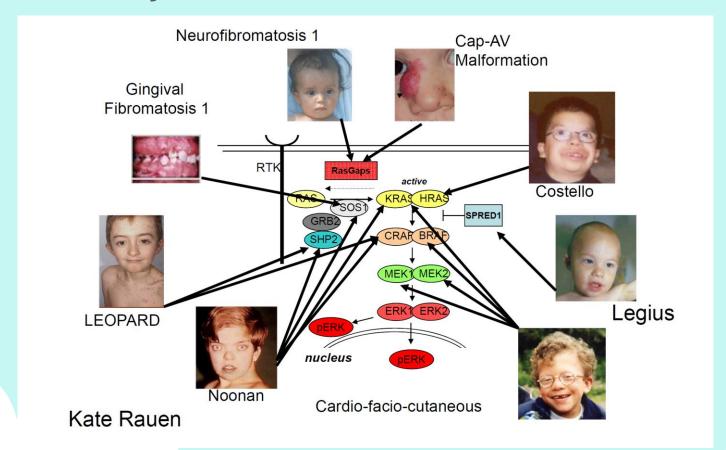
Expert Reviews in Molecular Medicine © Cambridge University Press

Bonaventure and El Ghouzzi. Expert Rev Mol Med 2003:1-17, 2003


FGFR Craniosynostosis Syndromes

- Autosomal dominant
- Genetic heterogeneity
- Phenotypic variability
- Gain of function mutations, missense and in-frame deletions and insertions, splicesite mutations in 85 to 90%


Jabs. ed. Jameson, Principles of Molecular Medicine, 1998



RAS/MAPK Pathway

Genetic Syndromes of the RAS/MAPK Pathway

